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APPLICATION OF FORMULA MANIPULATION 
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Abstract-The problems of nonisothermal fluid Row between parallel plates and in a circular tube are 
solved for the case when the thermal conductivity and viscosity are functions of temperature. The solutions 

are obtained using formula manipulation techniques. 
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NOMENCLATURE phenomenological coefficients ofdynamic viscosity and 

thermal conductivity; thermal conductivity are functions of temperature. are 

0 or 1 for a parallel-plate channel and a solved. In this journal the same problems were treated 

circular tube, respectively; previously by Butler and Rackley [5]. 

= -, flow parameter; 

axial pressure gradient; 
radial coordinate; 
half-width of the channel or radius of the 

pipe ; 
temperature: 
velocity; 
constants. 

Greek symbols 

j.5 = T,/T,, dimensionless temperature ratio; 

K dynamic viscosity; 

P, = r/R, dimensionless space coordinate. 

Subscripts 

a, average ; 
w’. wall property ; 
0, reference state; 
m. maximum. 

Superscripts 

bar (dimensionless notation for temperature, 
velocity, thermal conductivity and dynamic 
viscosity). 

1. INTRODUCTION 

RECENT development of programming science permits 
one to use computers for formula manipulation. 
Bibliography and detailed information about symbolic 
and algebraic manipulation technique can be found in 
[l-4]. 

The purpose of the present paper is to demonstrate 
applications of the symbolic manipulation system 
FORMAL* to heat-transfer problems. For example, 
the problems of slow viscous incompressible flow 
between parallel plates and in circular tubes, where the 

*FORMAL was originally developed at the Applied 
Mathematin Centre, Bulgaria. 

2. BASIC EQUATIONS AND SOLUTIONS 

Consider Poiseuille flow between parallel plates 
(m = 0) and in a circular tube (m = 1) at a constant 
wall temperature T,. thus any temperature gradient 
observed is due to the effects of viscous ‘dissipation 
within the channel. The flow is one-dimensional and 
the axial pressure gradient dp/dz is constant. The 
momentum equation and boundary conditions can be 
expressed as 

$,;{~(T,r”‘d$)} = dp,dz 

du(0) o -= 
dr 

(2) 

u(R) = 0. (3) 

Integration of equation (1) from 0 to r and use of 
condition (2) leads to 

The velocity is obtained through integration of equa- 
tion (4) from r to R and using condition (3) 

dpldz 
u(r) = -- 

m-t1 

The average velocity of the flow is given by 

m+l ’ 
u, = - R”+’ s r%(r)dr. 

0 

Substituting the velocity u(r) from the solution (5) 
into equation (6) gives 

dp,tdz 
u.= - 

(m+l)R”+’ 
(7) 

Combining the above two relation yields 

F= Rm”j,R~dr/j~!$dr. (8) 
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For convenience it is logical to define p = r.'R. 
11 = u(r)/u,, ji = pl T),'po. Then the nondimensional 
velocity correspondjng to equation (8) is 

For constant viscosity the expression for the dimen- 
sionless velocity takes the form 

m+3 
Ii(p) = _I_ 2 (1-p”). f 10) 

The one-dimensional energy equation and boundary 
conditions may be written as 

dT(O) o -= 
dr 

T(R) = T,. (13) 

The determination of the temperature is realized 
through a similar procedure. Energy equation (11) at 
boundary conditions (12)-(13) is reduced to 

after the required substitutions for the velocity gradient 
are made and two integrations are performed. 

In dimensionless form this solution becomes 

where T(p) = T(r)/T,. k(T) = k(T)/b 

Since T(0) = T,. f(0) = i. 
Thus. 

Subtraction of equation ( 16) from equation (15) gives 

,(,,=,-Mj~~ci:~dp)dp. (17) 

For constant phenomenological coefficients I?(T) = 
fi( T) = 1 the solution ( 17) gives 

T(p) = L - (A- 1 )pJ (18) 

where i = 1+ [M/4(m+3)]. 
We assume that both dynamic viscosity and therma 

conductivity are taken in the form 

(191 

where p. and k. are measured at a reference tempera- 
ture of the fluid and the exponents p and s are constants. 

In dimensionless form the phenomenological coef- 
ficients become 

Introduction of relation (20) into equations (9). (16) 
and ( 171 reduces these equations to 

3’. , 
ii(p) = 1 pP?ptdp [’ p”“‘F’(ptdp 1’1) 

tip -0 

T(p) = “-“~\~~~jP”@,” 122) 

CL- l)(i.t l)r’s = 2P-‘M~~(1) (23) 

where 

Equation (23) gives the relationship between the flow 
parameter M and the temperature ratio i. 

3. ALGORITHM FOR SOLVING THE PROBLEiM 

Equation (22) is in a form amenabIe to solution by 
Picard’s method of successive approximations. This 
method becomes very simple if we use the manipulation 
system FORMAL which permits one to integrate 
analytically. The following algorithm was successfully 
applied for solving the problem: 

I. The calculation is started with the initial tem- 
perature distribution I 18) corresponding to constant 
phenomenolo~ical coefficient 

To(p) = ic, -(i”- l)pi 

where i0 = if [M14(m+3)]. 
2. Substituting To(p) into equation (24) 

(25) 

P “+‘~p(pldp)dp (261 
/ 

one finds q”(p) by direct analytical integration. 
3. For selected value of the flow parameter M one 

can calculate A, numerically from equation (23) 

fi.,* I -I)(r.,*,+ 1)) = 8&JC&(l). (27) 

4. Ti(p) is obtained by substitutjng lpo(p) and ii 
into equation (22) 

The result is re-substituted into equation (26) to 
yield T*(p) and so on. The iteration order n was 
increased consequently up and stops when the accuracy 
required is achieved. 

5. Using formulae (21) the velocity 
‘I ‘1 

UP) = 
? 

p;f;R(p)dp p”‘+‘;f;R(p)dp 
j 

(24) 
P 0 

is calculated analytically. 
On the base of this algorithm the examples con- 

sidered in [S] were recalculated. 

4. iLLCSTRATIVE RESULTS 

In [5] is studied the Poiseuilletlow through a circular 
tube (m = 1) when the exponent of the phenomeno- 
logical coefficient was: p = 2 and s = 1. Detailed data 
are presented for the temperature and velocity distri- 
butions for different values of the flow parameter I. It 
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Table t. Temperature ratio i as a function of which easily permits the calcuiation of data for any p. 
the iteration order n The temperature ratios presented in Table 1 are 

r 
calculated using the system FORMAL realised on com- 

2 16 
puter RC4000 for 4 (r = 2) and 6 (I- = 16) seconds. 

n The examples considered above show that the 
1 1.015 744 014 1.131 481 790 analytical-numerical methods realized through for- 
2 1.015 745 997 1.132 142 729 mula manipulation techniques can successfully be used 
3 I.015 746 039 1.132 223 196 and one can expect to find their recent application in 
4 1.015 746 040 1.132 234 737 heat- and 
5 1.015 746 040 1.132 236 488 

mass-transfer problems. 

6 1.132 236 755 

is easy to establish the folfowing relation between the 
1. 

parameter r in IS] and M in the present paper: f = 8M. 
The data in Table I show that six iterations are 

enough to assure for the temperature ratio to an 
accuracy of six figures after the decimal point. 2. 

Table 2 presents the convergence of the values of the 
temperature distribution T,(p) and the velocity profile 3. 
u(p) and can be considered as a test for the accuracy 
of the data given in [5]. p. 1126. 

The advantage of the solution with symbol manipu- 
4. 

lation system FORMAL is that the result is obtained 
directly in a polynomial expansion 5. 

‘flp) = E:f-l)“a,pQ” 12% 
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Table 2. Dimensionless temperatures T.(p) and velocity pro&es as a function of the radius and the flow parameter 
fm=l,p==2.s=1) 

I- P 

2 0.0 1.015 744 
0.1 1.015 742 
0.2 1.015 71s 
0.3 1.015 615 
0.4 1.015 335 
0.5 1.014 746 
0.6 I .OI 3 676 
0.7 1.011 919 
0.8 1.009 236 
0.9 1.005 359 
1.0 1.~~ 

mp, 
~~ 

1.015 746 
1.015 744 
L .015 720 
1.015 616 
1.015 337 
1 X314 747 
1.013 677 
i.oi 1 920 
1.009 237 
1.005 360 
1.~~ 

1.015 746 1.015 746 1.015 746 2.0108 
1.015 744 1.015 744 1.014 744 1.9904 
1.015 720 1.015 720 f.015 720 I .9295 
1.015 617 1.015 617 1.015 617 1.8279 
1.015 337 1.015 337 1.015 337 1.6858 
1.014 747 1.014 747 1.014 747 1.5031 
1,013 677 1.013 677 1.013 677 I.2803 
1.01 I 920 1.01 f 920 1.att 920 1.0177 
1.009 237 I.009 237 1.009 237 0.7160 
I.005 360 1,005 360 1.005 360 0.3762 
i.~~ Loo0 000 1.000 ooo O.@OO 

16 0.0 1.131 482 1.132 143 1.132 223 
0.1 1.131 467 I.132 128 1.132 208 
0.2 1.131 247 1.131 904 1.131 984 
0.3 1.130 292 1.130 933 1.131 012 
0.4 1.127 728 1.128 330 1.128 404 
0.5 1.122 356 1.122 877 1.1’2 944 
0.6 1.112 699 1.113 09s 1.113 149 
0.7 1.097 110 1.097 348 1.097 386 
0.8 t ,073 943 1.074 033 1.074 055 
0.9 1.041 822 1.041 832 1,041 84f 
1.0 0.999 996 0.999 996 0.999 996 

Z(P) E(P) 

1.132 235 1.132 236 
1.132 220 1.132 222 
1.131 995 1.131 997 
1.131 023 1.131 025 
1.128 415 1.128 416 
1.122 954 1.122 955 
1.113 157 1.113 1.59 
1.097 392 1.097 393 
t ,074 058 1.074 059 
1.041 S42 1.041843 
0.999 996 0.999 996 

;TdP) 

1.m 237 
1.132 222 
1.131 997 
1.131 025 
1.128 417 
1.122 955 
1.113 159 
1.097 393 
1.074 059 
1.04J 843 
0,999 996 

2.08 56 
2.0630 
1.9951 
1.8820 
1.7242 
1.5227 
1.2797 
0.9990 
0.6865 
0.3501 
0.m 

ETUDE DE L’ECOULEMENT D’UN FLUIDE HORS D’EQUILIBRE 
A L’AIDE D’UNE METHODE ANALYTIQUE 

Rbum&-On &out le problbme d’un kcoulement non isotherme entre plaques parall&les et B I’intbneur 
d’un tube circulaire dans le cas de la conductivitk thermique et de la viscositk fonctions de la tempkrature. 

Les solutions sent obtenues par une m&ode analytique. 
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DIE ANWENDUNG MATHEMATISCHER UMFORMUNGEN AL’F 
NICHTGLEICHGEWICHTS-STRC)MUNGEN 

Zusammeofassung-Die Probleme der nichtisothermen StrGmung zwischen parallelen Platten und m 
Rohren werden fiir den Fall temperaturabhiingiger Werte der WLrmeieitfiihigkeit und der Viskositlt 

gel&t. Die LGsungen werden mit Hilfe mathematischer Umformungen gewonnen. 

MCl-IOJlb30BAHME METOAA IlPE06PA30BAHM5I @OPMYII 
B CJlY’IAE HEPABHOBECHOI-0 TEriEHMd XM~KOCT’M 

A~~o~aqrm-~a~o peweHHe 3anaq HeH30TepMwecKoro Te-ieHm XHLIK~CTH MexKny napannenb- 

HblMH ITJlaCTHHaMH H B KpyrJlOC( Tpy6ennff CJly'laX 3aBHCHMOCTH TelTJlOllpOBORHOCTH t( BRLWOCTH OT 

TeMllepaTypbL P~lueHHSl IIOJly'IeIibt MeTOllOM npeO6pa30BaHWI @OpMyn. 


